Kaplansky-type Theorems in Graded Integral Domains

نویسندگان

  • Gyu Whan Chang
  • Hwankoo Kim
  • Dong Yeol Oh
چکیده

It is well known that an integral domain D is a UFD if and only if every nonzero prime ideal of D contains a nonzero principal prime. This is the so-called Kaplansky’s theorem. In this paper, we give this type of characterizations of a graded PvMD (resp., G-GCD domain, GCD domain, Bézout domain, valuation domain, Krull domain, π-domain).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled fixed point theorems involving contractive condition of integral type in generalized metric spaces

In this manuscript, we prove some coupled fixed point theorems for two pairs of self mappings satisfying contractive conditions of integral type in generalized metric spaces. We furnish suitable illustrative examples. In this manuscript, we prove some coupled fixed point theorems for two pairs of self mappings satisfying contractive conditions of integral type in generalized metric spaces. We f...

متن کامل

Fixed point theorems for α-ψ-ϕ-contractive integral type mappings

In this paper, we introduce a new concept of α-ψ-ϕ-contractive integral type mappings and establish some new fixed point theorems in complete metric spaces.

متن کامل

Sandwich-type theorems for a class of integral operators with special properties

In the present paper, we prove subordination, superordination and sandwich-type properties of a certain integral operators for univalent functions on open unit disc, moreover the special behavior of this class is investigated.

متن کامل

Integral type contraction and coupled fixed point theorems in ordered G-metric spaces

In this paper, we apply the idea of integral type contraction and prove some coupled fixed point theorems for such contractions in ordered $G$-metric space. Also, we support the main results by an illustrative example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015