Kaplansky-type Theorems in Graded Integral Domains
نویسندگان
چکیده
It is well known that an integral domain D is a UFD if and only if every nonzero prime ideal of D contains a nonzero principal prime. This is the so-called Kaplansky’s theorem. In this paper, we give this type of characterizations of a graded PvMD (resp., G-GCD domain, GCD domain, Bézout domain, valuation domain, Krull domain, π-domain).
منابع مشابه
Coupled fixed point theorems involving contractive condition of integral type in generalized metric spaces
In this manuscript, we prove some coupled fixed point theorems for two pairs of self mappings satisfying contractive conditions of integral type in generalized metric spaces. We furnish suitable illustrative examples. In this manuscript, we prove some coupled fixed point theorems for two pairs of self mappings satisfying contractive conditions of integral type in generalized metric spaces. We f...
متن کاملFixed point theorems for α-ψ-ϕ-contractive integral type mappings
In this paper, we introduce a new concept of α-ψ-ϕ-contractive integral type mappings and establish some new fixed point theorems in complete metric spaces.
متن کاملSandwich-type theorems for a class of integral operators with special properties
In the present paper, we prove subordination, superordination and sandwich-type properties of a certain integral operators for univalent functions on open unit disc, moreover the special behavior of this class is investigated.
متن کاملIntegral type contraction and coupled fixed point theorems in ordered G-metric spaces
In this paper, we apply the idea of integral type contraction and prove some coupled fixed point theorems for such contractions in ordered $G$-metric space. Also, we support the main results by an illustrative example.
متن کامل